

Efficiency-Limiting Pathways in NFA-based Organic Solar Cell Blends – A Triplet Story

Donor-Acceptor Blends

- Non-fullerene acceptors (NFAs) have enabled power conversion efficiencies > 19% in organic solar cells
- However, the open-circuit voltage remains low relative to their optical gap due to excessive non-radiative recombination. **Can we identify them?**

Donor-Acceptor Blends

- Non-fullerene acceptors (NFAs) have enabled power conversion efficiencies > 19% in organic solar cells
- However, the open-circuit voltage remains low relative to their optical gap due to excessive non-radiative recombination. **Can we identify them?**

Donor-Acceptor Blends

$$\Delta V_{nr} = -\frac{k_B T}{q} \cdot ln(EQE_{EL})$$

 $EQE_{EL} = \gamma \cdot \Phi_{PL} \cdot \chi \cdot \eta_{out}$ χ - the fraction of radiative recombination events (spin-singlet excitations)

Solar Cells Simplified

PV Bucket Analogy

Solar Cells Simplified

"All solar cells have recombination losses" = "All buckets must have holes"!

...most buckets have too many holes...

Spin-States involved in OPV

 \rightarrow triplet states, pathways, kinetics?

Back Charge Transfer (Electron- / Hole- Back Transfer)

Triplet Excitons in NFA Blends

Triplet Excitons in Fullerene Blends

Toolbox for detecting Triplets Adv. Energy Mater. 2022 10.1002/aenm.202103944

Toolbox for detecting Triplets Adv. Energy Mater. 2022 10.1002/aenm.202103944

Energetics of halogenated D:A blends

HOMO/LUMO level

Singlet, Triplet and CT States

Material	S ₁ [eV]	ΔE _{st} [eV]	T ₁ , T ₂ [eV]	CT [eV]
PBDB-T	1.85	0.40	1.45	
PM6	1.92	0.41	1.51	
PM7	1.92	0.41	1.51	
Y6	1.39	0.56, 0.35	0.83, 1.04	
Y7	1.40	0.55, 0.34	0.85, 1.06	
PBDB-T:Y6				1.35
PM6:Y6				1.37
PM7:Y6				1.37
PBDB-T:Y7				1.36
PM6:Y7				1.38
PM7:Y7				1.38

 ΔE_{ST} calculated, T_1, T_2 determined by substracting ΔE_{ST} from S_1

G. Londi, Mons, Belgium

Influence of halogenation:

- \rightarrow similar energetics
- \rightarrow improved PCE

Halogenation and Triplets Adv. Funct. Mater. 2023 10.1002/adfm.202212640

NIVERSITÄ NÜRZBURG

Photoluminescence Detected Magnetic Resonance

 $\widehat{H} = \widehat{H}_{\text{EX}} + \ \widehat{H}_{\text{EZ}} + \ \widehat{H}_{\text{ZFS}} = \hat{\vec{S}}_{1}^{T} \boldsymbol{J} \ \hat{\vec{S}}_{2} + \boldsymbol{g} \ \mu_{B} \ \hat{\vec{S}} \ \vec{B} + \hat{\vec{S}}^{T} \boldsymbol{D} \ \hat{\vec{S}}$

10.1002/adfm.202212640

Transient EPR

Pathway by trEPR

 \rightarrow triplet excitons on Y6 by SOC-induced ISC

 \rightarrow no Y6 Triplets in PBDB-T:Y6

Adv. Funct. Mater. 2023 10.1002/adfm.202212640

Summary: Triplet Excitons in OPV Blends

Triplet States

• Triplet excitons in all PM:Y-Series blends on NFA

Pathways

- SOC-induced ISC on NFA \rightarrow to higher lying T₂ state (G. Londi, Y. Olivier) \rightarrow higher ISC yield in PM6 and PM7 blends
- Non-geminate HBT in all studied PM:Y-Series blends
- Minor influence of halogenation of HBT rate

Efficiency-limiting pathways even in state-of-the-art combinations!

Toolbox for detecting Triplets Adv. Energy Mater. 2022 10.1002/aenm.202103944 Halogenation and Triplets Adv. Funct. Mater. 2023 10.1002/adfm.202212640 Triplet-Triplet Annihilation vs. Voc arXiv: 2301.02112

Efficiency-Limiting Pathways in NFA-based Organic Solar Cell Blends – A Triplet Story

In collaboration with:

Jeannine Grüne, Andreas Sperlich University of Würzburg, Germany

Alexander J. Gillett, Richard Friend University of Cambridge, UK

Giacomo Londi, Yoann Olivier, David Beljonne Université de Namur, Belgium

