

The role of interfaces in perovskite solar cells

Summer School, Khiva

Selina Olthof

- 1. Role of interfaces in solar cells
- 2. Measurement of energy level alignment
- 3. X-ray photoelectron spectroscopy (XPS)
- 4. Perovskite interfaces measured by XPS
- 5. Understanding interface chemistry

Interfaces in perovskite devices

Perovskite solar cells are multilayer devices

1. "Standard" architecture adopted from DSSC design

2. Inverted devices adopted from organic solar cells design

Interfaces play crucial role for efficiency <u>and</u> stability

Interfaces in solar cells

Literature: effect of barriers in organic solar cells

Materials Views

Influence of Hole-Transport Layers and Donor Materials on Open-Circuit Voltage and Shape of *I*–*V* Curves of Organic Solar Cells

Wolfgang Tress,* Karl Leo,* and Moritz Riede

Experiments: using bulk heterojunction organic semiconductors

Using drift-diffusion simulations they could reproduce the solar cell behaviors

So how does this play out in perovskite solar cells?

Selina Olthof | Khiva May `23

Correlate their ionization potentials with the open-circuit voltage of the device

Correlate their ionization potentials with the open-circuit voltage of the device

Seok et al., Energy & Env Sci, 7, 2614 (2014)

1.0

Correlate their ionization potentials with the open-circuit voltage of the device

McGehee et al., ACS Energy Lett, 1, 556 (2016)

- most devices show similar J_{sc} and V_{oc}
- only for TPD clear extraction barrier but that does not scale with energy alignemnt

Correlate their ionization potentials with the open-circuit voltage of the device

Bolink et al., J Mater Chem C, 7, 523 (2019)

- changes in FF
- but no evidence of a trend

Correlate their ionization potentials with the open-circuit voltage of the device

10

Park, Graham et al., ACS Applied Materials & Interfaces, 10, 15548 (2018)

• No significant effect of IE

Correlate their ionization potentials with the open-circuit voltage of the device \rightarrow Looking at Br containing perovskites

largest V_{oc} for spiro-OMeTAD, despite large predicted injection barrier

University Of Cologne

Correlate their ionization potentials with the open-circuit voltage of the device \rightarrow Looking at Br containing perovskites

Ho-Baillie / Green et al., J Phys Chem C, 119, 354 (2015)

Even for the wide band gap MAPbBr₃ spiro-OMeTAD works well! \rightarrow Large V_{oc} achievable

→ Spiro-OMeTAD works well for many of the perovskites
→ IE seems not to matter much

Lets measure anyways...

- 1. Role of interfaces in solar cells
- 2. Measurement of energy level alignment
- 3. X-ray photoelectron spectroscopy (XPS)
- 4. Perovskite interfaces measured by XPS
- 5. Understanding interface chemistry

UV photoelectron spectroscopy (UPS)

Measurement of occupied density of states: UPS: Excitation by UV light, e.g. hv = 21.22eV

University Of Cologne

How does the substrate - perovskite interface behave?

→ this would mean that perovskite Wf can be predicted and tuned by substrate Wf

How does the substrate - perovskite interface behave?

University Of Cologne

How does the substrate - perovskite interface behave?

Interface study of:

- **MAPbl**₃ by *co-evaporation* of Pbl₂ and MAI
- on 4 substrates: MoO₃, PEDOT:PSS, ITO, PEIE
- incremental thicknesses 2 Å to 200 nm
- each layer measured by UPS and XPS (in situ)

The substrate – perovskite interface: UPS measurement

University Of Cologne

Interface resolved UPS measurements (d = 0 nm):

The substrate – perovskite interface: UPS measurement

Interface resolved UPS measurements (d = 0, 0.2, 0.5, 1, 3, 10, 30, 100, 200 nm):

Scientific Reports, 7, 40267 (2017)

21

The substrate – perovskite interface: UPS measurement

Interface resolved UPS measurements (d = 0, 0.2, 0.5, 1, 3, 10, 30, 100, 200 nm):

1. Role of interfaces in solar cells

2. Measurement of energy level alignment

3. X-ray photoelectron spectroscopy (XPS)

4. Perovskite interfaces measured by XPS

5. Understanding interface chemistry

We can learn more about the interface using X-ray photoelectron spectroscopy (XPS)

Tables with characteristic binding energies are used to identify elements

Table 4.2 Binding energies of some elements

Z	El	1s _{1/2} K	$2s_{1/2} \\ L_1$	$2p_{1/2} \\ L_2$	2p _{3/2} L ₃	3s _{1/2} M1	3p _{1/2} M ₂	3p _{1/2} M3	3d _{3/2} M4	3d _{5/2} M5
1	н	14								
2	He	25								
3	Li	55								
4	Be	111			-					
5	В	188			5					
6	С	284			5					
7	N	399		9	9					
8	0	532	24		7					
9	F	686	31	9	9					
10	Ne	867	45	18						
11	Na	1072	63	31		1				
12	Mg	1305	89	52		2				
13	MĪ	1560	118	74	73	1				
14	Si	1839	149	100	99	8				
15	Р	2149	189	136	135	16	1	.0		
16	S	2472	229	165	164	16	1	8		
17	Cl	2823	270	202	200	18	,	7		
18	Ar	3202	320	247	245	25	1	2		
19	K	3608	377	297	294	34	1	8		
20	Ca	4038	438	350	347	44	2	26		5

XPS External excitation hν

Basic measurement idea same as in UPS:

A photon releases an electron

Sample is illuminated with monochromatic light of specific energy E = hv

The kinetic energies of electrons originating from different energy levels will be different – depending on binding energy E_B

The relation between E_{kin} and E_B is $E_{kin} = h\nu - E_B$

Photon energy of ca. 1-2 keV necessary to excite inner electrons \rightarrow X-rays

Our setup in Cologne

Schematic mean free path of an electron in a solid

 \rightarrow ~ 10 nm of surface are only measured

Measure core level states

X-ray photoelectron spectroscopy: Excitation by x-rays, e.g. Mg K_{α} @ hv = 1253.6 eV

element relative concentration (= composition)

Chemical environment of the element has an influence as well

In detailed scans one can see these variations by the appearance of several peaks of the same element \rightarrow this is the **chemical shift**

Measure core level states

X-ray photoelectron spectroscopy: Excitation by x-rays, e.g. Mg K_{α} @ hv = 1253.6 eV

- element relative concentration (= composition)
- oxidation states

30

Selina Olthof | Khiva May `23

- 1. Role of interfaces in solar cells
- 2. Measurement of energy level alignment
- 3. X-ray photoelectron spectroscopy (XPS)
- 4. Perovskite interfaces measured by XPS
- 5. Understanding interface chemistry

Probing the interface composition by XPS

XPS measurement of **thick** MAPbI₃ film:

Probing the interface composition by XPS

XPS measurement of **thick** MAPbl₃ film:

XPS measurement of **thin** $MAPbI_{3}$ film:

→ changes in intensity and bonding environment reveal perovskite degradation

- More neutral oxidation states of C and I (40%)
- N is missing
- Pb present as $PbI_{2}(11\%) / PbO(2\%)$

- 1. More neutral oxidation states of C and I (40%)
- 2. N is missing
- 3. Pb present as Pbl₂ (11%) / PbO (2%)
- 4. Additional I must form surface bonds (31%)

- 1. Are these results from evaporated layers representative?
- 2. Do other metal oxides interact similarly?
- 3. Are different perovskites equally affected?

Comparison MAPbl₃ on ITO via evaporation and solution

Interface of different metal oxides with MAPbl₃

nsityhtensitytensity

situtensitte

Interhistenslityen

iodide

iodide

iodide

62 iod

de

iodide⁶¹⁶

24**i082016**616

24 62

62

616

616

616

nitrogen

nitrogen

nitrogen.

- nitroge

nitrogen

4104tra0ge400

Binding

402 40

400

404 🦌

carbon

carbon

carbon

Gigi Sy (Cyv

erav (

Binding energy (e

Binding energy (ev)

²carbor

28881285128

lead

lead

lead

le³⁸d

0380

38

138

138

13

136

136

140

140

140

d

ITO^[1]

 \rightarrow lodide, PbI₂, and hydrocarbons

Organic substrate (PEIE)^[1] \rightarrow Perovskite + MAI dissociation products

SnO_x^[2]

 \rightarrow Pbl₂

TiO₂^[3]

 \rightarrow PbI₂ and hydrocarbons

ZnO^[4]

 \rightarrow PbI₂ and lots hydrocarbons

NiO_x[unpublished]

 \rightarrow Carbon species and iodide

MoO₂^[1]

 \rightarrow hydrocarbons and amines

400 288 285 28 620 616 140 138 Binding energy (eV) 282 140 624 620 616 402 400 404 288 285 Binding energy (eV) [3] ACS Appl. Mater. Interf. 11 32508 (2019) [4] Nano Energy 83, 105774 (2020)

Selina Olthof | Khiva May 23

- 1. Role of interfaces in solar cells
- 2. Measurement of energy level alignment
- 3. X-ray photoelectron spectroscopy (XPS)
- 4. Perovskite Interfaces measured by XPS
- 5. Understanding interface chemistry

What triggers the reaction and which component is responsible?

One step back:

• investigate only the precursors

MAI, FAI, MABr, FABr (0.05M)

(r) fure MAI $\sim 50\%$ loss ~ 633 ~ 630 ~ 627 ~ 633 ~ 630 ~ 627

 \rightarrow at the interface to MoO₃ halide species is missing

Experimental observation for halide species:

Iodide signal

What triggers the reaction and which component is responsible?

One step back:

investigate only the precursors

MAI, FAI, MABr, FABr (0.05M)

Experimental observation for halide species:

Iodide signal

 \rightarrow at the interface to MoO₃ halide species is missing

University Of Cologr

Assume 4 possible reactions

Theory input from

and U. Twente

Prof. Shuxia Tao

Prof. Geert Brocks

Precursor interaction on pristine surface:

All reaction energies lowered on surface

 \rightarrow pristine MoO₃ surface stabilizes the precursor molecules

Universit Of Cologr

Assume 4 possible reactions

Precursor interaction with **defective surface** (oxygen vacancy):

Theory input from

and U. Twente

Prof. Shuxia Tao

Sofia Apergi

Prof. Geert Brocks

A2 B1 B2 A1

 \rightarrow Presence of an O vacancy lowers all reaction energies significantly

 \rightarrow But no significant difference found between precursors

Understanding the reactivity of MoO₃

Indeed, oxygen vacancies are observed experimentally (~4 - 10%)

As prepared MoO₃

Changes in Mo oxidation observed after deposition of precursors:

→ additional Mo oxidation states appear in contact to iodide precursors
→ redox reactions must happen!

Understanding the reactivity of MoO₃

Understanding the reactivity of MoO₃

Can we inhibit degradation by reducing initial defect density?

Ozone treatment of MoO₃

 \rightarrow Ozone treatment reduces vacancies by factor ~3

MAI on as prepared and ozone treated MoO₃

Due to suppression of redox reaction #2 we have

- less reduced Mo species
- no loss in iodide
- for FAI we can suppress redox reaction almost completely

Selina Olthof | Khiva May `23

Take home message

Interfaces matter!

... but <u>energetic offsets</u> in perovskite devices are probably less critical

Perovskites tend to strongly interact with metal oxides

 \rightarrow much less so with organic surfaces

Interface composition is complex and different for each material

- \rightarrow hydrocarbons seem detrimental
- \rightarrow PbI₂ is probably preferred

For MoO_3 the reactivity driven mostly by iodide \rightarrow Br compounds much more stable

Acknowledgement

People:

Cologne Klaus Meerholz John Mohanraj Christine Koch Thomas Riedl Ting Hu *University Arizona* Clayton Shallcross

Neal Armstrong

University Wuppertal

Skoltech Pavel Troshin Sergey Tsarev

University Eindhoven Shuxia Tao Sofia Apergi

University Twente Geert Brocks

Funding:

Die Landesregierung Nordrhein-Westfalen

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

Thank you for your attention

